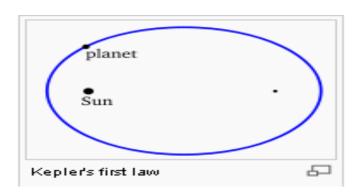
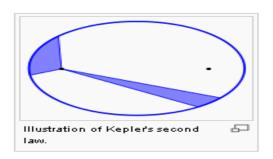

Tycho Brahe (1564 - 1601)

- made very precise observations and kept the most accurate records of the positions of the stars and planets
- did <u>not</u> believe in Copernican System (Sun centered), because he could not detect <u>Stellar Parallax</u>, the apparent shift in a stars position relative to the background stars due to the motion of the Earth around the Sun

Tycho's Geo-heliocentrism


- Parallax can only be detected with telescopes because of the great distances of the stars from Earth
- Formula for parallax, $R=1/\theta$ where R is distance in parsecs (3.26 light years) and θ is the parallax angle measured in seconds (")

Johannes <u>Kepler</u> (1571 – 1630)


- Assistant to Brahe
- Used Brahe's data to develop three laws of planetary motion

 $\underline{\mathbf{1^{st} Law}}$ - Planets travel in elliptical orbits with the Sun at one focus

2nd Law – Equal Area Law

- Planets will sweep through equal areas of space in an equal period of time
- Planets travel faster when closer to the Sun (<u>Perihelion</u>) and slower when farthest from the Sun (<u>Aphelion</u>)

3^{rd} Law – Harmonic Law $P^2 \propto a^3$

- the further a planet is from the Sun, the longer it takes to orbit
- P = period of orbit (years)
- a = distance of planet (AU's)
 - An <u>AU</u> is an astronomical unit, or the average distance between the Earth and the Sun which is about 150,000,000 km or 93,000,000 miles